T-FORS 1st Innovation D

LSTID Forecasting

Luca Spogli




Outline

o LSTIDs occurrence chain of events
o LSTID forecasting based on ML: general strategy

o Developing the ML models
o Features and labels
o First approach: catalogue-based forecasting
o Second approach: LSTID indices-based forecasting

o Remarks and way forward

O

TRORS



Large-scale Travelling lonospheric Disturbances
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LSTIDs occurrence chain of events from the auroral oval to middle latitudes

Geomagnetic field
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LSTID forecasting based on ML: general strategy

* Solar cycle

* SSN

* F10.7
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LSTID forecasting based on ML: general strategy

Magnetosphere Ionosphere Earth
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LSTID detection model development: General strategy

Exploratory data analysis
Impute missing values
Sync different sources

Data visualization & inspection

Feature selection
Compute covariances
Data normalization

Split training & validation sets

Build and train Neural Network

Parameter tuning & cross-validation

Deploy model

Performance
evaluation

Re-train Neural
Network
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Developing the ML models: features & labels
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Developing the ML models: features & labels

1-10 Sep 2015
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Developing the ML models: catalogue-based forecasting

» The problem is handled as a binary classification

» HF-INT refined LSTID catalogue provided by Ebro
Observatory

» In the catalogue, there are 760 TIDs events detected and
recorded above Europe between FEB 2014 to DEC 2022

» The database is generated by leveraging a network of
ionosondes covering the European sector

| Binary TID activity
classification (Y/N)

Start time 20220111 21:00
Duration 2.0 hrs

Period 119.74 min
Amplitude 0.72 MHz
Velocity 597.47 m/s
Azimuth 202.39°
Do | o2

Catalogue example
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Developing the ML models: catalogue-based forecasting

1-10 Sep 2015

> The dataset is incomplete: (misdetections related to . W
) ) . y | Ll — fpx"m.\,\w
the technique used to create it) WMww\MAw'\M.,m,\wwy\VW\WJM,V;\,M/ W
» The class are severely unbalanced: 3% of Yes and 97% /M
of No T et S il o A
> The input is shifted in space and time respect to the ‘. MWMM
output . \ PR h
>  Built ML dataset made of 157.777 couples (X(T),y(T)) - e '
for each T every 30min between FEB 2014 and DEC l i_i i W
2022, where:
X(T -6.5h) X, (T—-6h) X (T-55h) X, (T-5h) ... X(T-1h) X,(T-0.5h)
X(T) Xo(T - 6.5h)  Xo(T —6h)  Xo(T —5.5h)  Xo(T — 5h) Xo(T —1h)  Xo(T — 0.5h)
Xn(T —6.5h) Xn(T —6h) Xn(T—55h) Xn(T—5h) ... Xn(T—1h) Xx(T —0.5h)
y(T) = {1 TID detected in 3h starting from T.

0 else. % RS



Developing the ML models: catalogue-based forecasting

We run different configurations of the models with different hyperparameters

Best performances are obtained using neural networks

Results are not satisfactory: we are not able yet to classify correctly the two classes based on
external drivers

» This suggests no clear correlation between the classes, given the features used
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Developing the ML models: LSTID indices-based forecasting

* The LSTID forecasting is treated as a binary classification problem

 IfSPcont > Treshold then an LSTID is detected (otherwise no LSTID is detected).
e [L,IU,GNSS, LT and SPCont values are considered as features

e Results (so far) only for Juliusruh ionosonde

3 Different models:

o Prediction of LSTID based exclusively on the most recent SPcont values.

Prediction of LSTID based exclusively on the most recent IL, IU, GNSS, LT values.

o Prediction of LSTID based on both (a) the most recent SPcont values and (b) the most recent IL, IU, GNSS, LT
values.

O

Classifiers employed:

> Feedforward Neural Network classifier — FNN
> Block Recurrent Neural Network classifier — RNN
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Developing the ML models: LSTID indices-based forecasting

Model 1: Prediction of LSTID based exclusively on the most recent
SPcont values.

Remarks:

» Trained FNN features very high accuracy results, even for higher time
horizon forecasts.
» In principle, as the time horizon increases, the performance degrades.
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Model 2: Prediction of LSTID based exclusively on the most
recent [L,IU,GNSS, LT values.

Remarks:
> The results of the FNN classifier are less accurate than in

the case where only the SPcont past values are
considered (Model 2).
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Developing the ML models: LSTID indices-based forecasting

Model 3: Prediction of LSTID based on both (a) the most recent SPcont values and (b) the most recent IL, [U, GNSS, LT values.

Remarks:
JRO55 data, theta 70

—— RNN classifier
—— RNN classifier no covariants

» The results of Model 3 are more accurate than in the case where only IL, IU, GNSS,
LT past values are exclusively considered as inputs (Model 2). 0o

RNN

» The results of Model 3 are less accurate than in the case where only the SPcont
past values are considered (Model 1) but it can handle missing values
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Stacked model: Exploit the three models to always provide best results 0s
» If all the most recent SPcont values are available, Model 1 should be used. s
» If none of the most recent SPcont values are available, Model 2 should be used. ? ‘ foracast horizon 10 =

> If some of the most recent SPcont values are available, Model 3 should be used.
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Remarks and way forward

Catalogue-based forecasting:
» Add new input features

» Investigate other time-delays\input time window to be used for the catalogue-based model

Indices-based forecasting:

Application of the model to other stations (only Juliusruh was considered).

Utilization of larger data sets (longer time periods).

Intensive study of the data (e.g., the time periods where LSTIDs are encountered).
Dealing with the missing data issue (e.g., the cases where the SPcont computation fails).

Performing classification at a specific station utilizing data from other stations that are at higher
latitudes and/or develop a model leveraging the TID activity index dataset (HF-INT)

YV YV YVYVY
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Thanks for your attentiol

LSTID Forecasting

Luca Spogli
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