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What has AI in store for plasma physics?



Supervised: It replaces and improves on what 
humans can do

Unsupervised: It takes independent direction but 
needs human post facto interpretation
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Supervised vs Unsupervised

Since 2016 AI is better than humans at recognizing images
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• Chat GPT, Bard
• Image generation
• Replacing physics-based 

simulations with trained neural 
Networks

• Surrogate models
• Graph Neural Networks
• Generative Adversarial Networks

4. First Results

*hanne.baeke@kuleuven.be , [1]Centre for Mathematical Plasma Astrophysics, KU Leuven, Heverlee, Belgium.

To improve my results I will:

- Move on from non-physical periodic boundaries. While being 

convenient in simulations, they are an additional difficulty for this 

machine learning model.

- Improve results of GNN on simulations with reflective boundaries.

- Extend to open boundaries, necessary to model the magnetosphere 

of Mercury. Requires variable number of particles.

- Include magnetic (and electric) field as input of GNN.

Any suggestions and comments are welcome!

Graph Neural Networks as Surrogate 
Model for Plasma Simulations

Hanne Baeke *, [1], Jorge Amaya [1], Giovanni Lapenta[1]

The surrogate model is based on a code from Sanchez et al. (2020), see 

Figure 1. They use Graph Neural Networks (GNN) to learn interactions of 

particles in SPH simulations. Each timestep passes through a learned 

simulator, with an encoder, processor, decoder and update function.

Encoder: constructs graph G0, with a node for each particle.

Processor: performs M message passing steps, propagating latent 

information between nodes via the edges. 

Decoder: extracts dynamics information from the nodes of the final graph.

The solar wind poses serious risks to space missions, both to the equipment and to any people on board. Therefore, knowing the plasma conditions 

throughout our solar system is important. Usually, simulations are used for predicting plasma conditions, but they require a lot of computing resources and 

time. My research focuses on accelerating these predictions using surrogate models. These are machine learning models that mimic the simulations.

The method is tested on simple plasma simulations. Afterwards, it will be applied on increasingly more complicated systems, like the magnetosphere 

around Mercury and the Moon or the evolution of the solar wind approaching Earth.

1. Research Question

2. Surrogate Model

3. Simulation Method
Slurm (Olshevsky et al. 2019), a fluid particle-in-cell code, is used to 

generate the training data. Kelvin-Helmholtz and Rayleigh-Taylor 

instabilities are a key ingredient in fluid modeling of astrophysical 

phenomena, like the solar wind-magnetosphere interaction. Therefore, the 

surrogate model is applied on simulations of both instabilities, see Figure 2.

Two different boundary conditions are used: 

- Periodic boundaries for the Kelvin-Helmholtz instability (KH).

- Reflective boundaries for the Rayleigh-Taylor instability (RT).

Preliminary results are shown in Figure 3. 

Kelvin-Helmholtz instability:

- Particles moving left and right are learned correctly.

- Over time the particles move diagonally out of the frame.

→ Indicates ill-defined periodic boundaries.

- KH instabilities are not learned.

Rayleigh-Taylor instability:

- Reflective boundaries are learned, particles stay within the frame.

- RT instability is not learned, requires more data in that region.
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The research leading to the results presented here received funding from a ‘Frank De Winne’ SB PhD 
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Figure 2 : Two snapshots of each simulation made with Slurm. Left: Kelvin-Helmholtz instability, velocity at 
t=0 and t=2. Right: Rayleigh-Taylor instability, velocity at t=0.425 and t=0.775.

Figure 1 : (a) The GNN predicts future states represented as particles using a learned simulator, s𝜃. (b) s𝜃 uses an 
“encode-process-decode” scheme to compute dynamics information, Y, from input state, X, with (c) the 
encoder, (d) the processor and (e) the decoder. Figure from Sanchez et al. (2020).

5. Research Plan
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Figure 3 : Rollouts of the two test simulations, generated by the learned GNN. The ground truth is given by 
the upper row, while the bottom row shows the predictions. Left: KH-instability. Right: RT-instability.

I will extend the GNN surrogate model to plasma simulations. These have 
as additional difficulty that interactions are not only governed by collisions, 
but also by the electric and magnetic field, as well as the particles’ charges.
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full videos:

Kelvin-Helmholtz Rayleigh-Taylor

Generative Neural Networks



Inserting physics into the NN workings Discovering physics with ML: equation

DATA-DRIVEN DISCOVERY OF REDUCED PLASMA … PHYSICAL REVIEW RESEARCH 4, 033192 (2022)

FIG. 4. Hierarchy of Pareto-optimal models obtained for the MHD energy density equation from the magnetized shock data. Pareto analysis
of the FVU of each model [MSE(model)/VAR(Dp/Dt )] versus the number of nonzero terms. The markers and error bars have the same
meaning as in Fig. 2. Tenfold cross validation indicates that the optimal accuracy-complexity trade-off is obtained for a model of five terms
(marked by the vertical dashed line), which corresponds to the recovery of the full form of the MHD energy density equation. A hierarchy of
reduced models is obtained at lower model complexities, with the arrows indicating the physical meaning of the successive approximations
identified by the SR procedure.

based on reduced plasma descriptions are key to modeling the
dynamics of shocks in large-scale systems. In this context,
MHD is often used as the framework of choice [36–38].
In scenarios where particle acceleration is important, MHD
can be complemented by the use of test particles [39,40] or
by recently developed MHD-PIC frameworks [41,42], where
the feedback of energetic particles (described by PIC) on
the background fluid (described by MHD) is captured on large
scales. However, in all these cases, the description of the
background fluid relies on oversimplified closures that cannot
capture the impact of the dominant microscopic effects on
the shock evolution. Here, we show that SR offers a pow-
erful approach to leverage the detailed dynamical data from
first-principles kinetic simulations to inform the dominant mi-
croscopic processes and guide the development of improved
kinetic-fluid closures that encapsulate their effects in MHD.

This is exemplified in Fig. 4, which shows the model
accuracy-complexity curve obtained during the inference of
the MHD energy density equation (using the integral for-
mulation) from the magnetized shock data. The pronounced
inflection of this curve at a model complexity of five terms
marks the optimal trade-off between complexity and accuracy,
and corresponds to the complete conservative form of the
MHD energy density equation (with mean coefficient error of
≃4%). At lower model complexities, a hierarchy of reduced
models is obtained that reflects successive approximations to
the MHD energy density equation that is directly informed by
the data. Each of these approximations has a clear physical
meaning as indicated in Fig. 4. In this particular example,
we find that the most dynamically important terms are (in as-
cending order) Joule heating, gyroviscous effects (associated
with off-diagonal elements of the pressure tensor), pressure
anisotropy, heat flux, and (isotropic) compressional heating.
The SR approach thus provides important insight into the
dominant physical processes and allows us to quantify the
error associated with neglecting each model term, which are
critical to guide the development of tailored reduced models
for any given application.

It is interesting to observe that among the hierarchy of
inferred Pareto-optimal models, the widely used adiabatic
closure approximation is automatically identified as the sim-
plest (yet least accurate) model for the MHD energy density
equation for the plasma dynamics in this data. The adiabatic
closure corresponds to the 1−term model in Fig. 4, which
contains only the compressional heating term (p∂x⟨vx⟩). This
approximate model truncates and closes the hierarchy of fluid
equations by neglecting the gradient of the heat flux (∂xqx)
term, but misses ≃ 20% of the variance in the total time
derivative of the plasma energy density. Note that the coeffi-
cient of 1.49 corresponds to the inferred adiabatic index. If the
heat flux were truly negligible, however, the adiabatic index
would be expected to take on the value of 2 since the shock
heating in this system occurs only in two velocity degrees
of freedom (heating along the direction of the background
magnetic field does not occur in this geometry). The reduced
value of the inferred adiabatic index is thus a consequence of
the heat flux not being entirely negligible in this scenario, and
results from the SR procedure attempting to compensate its
absence so as to best describe the data.

In addition to analyzing the overall accuracy of a given
model [as shown in the accuracy-complexity curves], it is
instructive to examine the spatiotemporal distribution of the
model error on the data to gain a deeper understanding of
its ability to describe the physics (dynamics) in the data
and also to diagnose missing physics in the model (model
bias). Such analysis reveals, for example, that the pressure
anisotropy and Joule heating terms are important primarily in
the shock transition region and can be neglected outside this
region. A detailed discussion is provided in Appendix G (and
Fig. 8). The spatiotemporal model error distribution can thus
be valuable in guiding the choice of appropriate approxima-
tions when developing reduced models.

Having identified the dominant physical processes in the
energy density equation and the importance of heat flux in
the dynamics of the magnetized shock, the stage is set for
the development of more accurate closure models; the same

033192-7
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Physics informed NN

Copyright © ASME. Cai et al., DOI: 10.1115/1.4050542 Alves, E. P., & Fiuza, F. (2022). Physical 
Review Research, 4(3), 033192.

https://doi.org/10.1115/1.4050542


• well established. 
• social risks (jobs lost).
• probably unstoppable

Replacing humans for tedious tasks

• well established. 
• sheer brute power
• great opportunity

Helping with data discovery with tasks not humanly feasible

• seen as an alternative numerical method
• great opportunity on new heterogeneous architectures
• need for numerical analysis (stability, accuracy)

Replacing physics-based models with NN 

• opportunity for large data ingestion
• human revision in final decision
• example: major geomagnetic storm (3 days since solar origin)

Making forecasts (long term, with human 
supervision)

• can we trust decision not based on physics?
• need for uncertainty quantification and explainable AI
• need for societal adjustments

Making rapid decisions (no 
human supervision)

• this will still rely on human post facto interpretation
• an additional tool of theoretical investigation
• possibly the most exciting opportunity

Finding 
patterns/correlations 
we never thought of 

• surrogate models to allow more efficient modelling
• it's very new but potentially it gives a satisfying answer
• it can be validated and verified in the usual manner

Discovering 
equations

6

What can we hope
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Courtesy of Glen Wurden (LANL)

If anything ML can be fun.

I asked Adobe AI to generate a picture of a 
"stellarator nuclear fusion rocket".... and this is 
what I got (Glan Wurden)
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be a validation report which will determine which ML algorithms are best suited for different in-flight scenarios. 
These activities will be developed by WP4. 

4. Implementation of a virtual environment to provide support to the development of ML algorithms  
We plan to support to the design phase and the development of artificial intelligence methods for on-board science 
operations and identifications of regions of scientific interest in space, by testing and validating them in a virtual 
environment, realized by making use of sophisticated numerical simulations run with physical characteristics and 
parameters very close to reality. In this virtual environment, measurements will be provided by synthetic spacecraft 
(or constellations of spacecraft), designed to fly through the simulation box, mimicking real measurements 
(electromagnetic fields, particles and plasma parameters) in space. The development of the virtual environment will 
be the main theme of WP5. 
The final impact of the project will meet a fifth specific objective by providing the community with a new paradigm 
for space mission operation via the dissemination and exploitation of the results of our project: 

5. Transforming the future development of technologies and scientific instrumentation for space science and 
exploration missions bringing artificial intelligence to space missions  
Reaching a positive outcome in the activities of the previous objectives will create a new approach to the design of 
future missions of exploration where the autonomous operation entrusted to ML tools will allow to reduce the burden 
on ground operations and will enable to do operations in space that are not possible when a ground operator needs to 
be in control. The results of our activities will provide future exploitation opportunities and will be disseminated 
making all software and all hardware specifications available to the space science community. The exploitation and 
dissemination will be the main theme of WP6. 

 

 
Figure 1 Illustration of the goals of ASAP: select key ML algorithms (WP2) that currently work on powerful GPUs 
(an example from Nvidia is shown) that can only be used on the ground and develop a prototype hardware based on 
space-ready processors (an example FPG FPGA is shown in figure) (WP3) with the necessary software (WP4) to 
port the algorithms to the space-ready prototype. The project also foresees the validation of the new hardware and 
software with data of past missions and for conditions of future missions (the figure shows a mission launch) using 
a virtual flight simulator to generate synthetic data. 

1.1.2 Ambition 
ASAP joins greatly skilled industry and academic teams with the aim of making a significant progress in the capacity 
of performing scientific operations directly on-board space missions. This will produce important results in terms of 
the capacity of the realization and exploitation of space exploration missions, including human missions, with 
significant returns for our society. These skills regard the AI/ML applications, space physics and space weather 
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AI services for 
space missions
• Data retireval tools: avoiding any replication with 

other python tools, e.g. pySPEDAS, Heliopy.

• Link with ongoing missions: SDO,MMS and PSP.

• Link with upcoming data: strong initiative to provide 
AidaPy services to SolO

• Virtual Mission Tool: to create synthetic data from 
simulation as if it were created by a missiong under 
design

• Linking simulation and observation: so that the same 
analysis can be applied to both

• ML tools to identify extreme events: e.g. shock, 
reconnection.

• ML-driven creation of lists of events

H. Breuillard et al.
Front. Astron. Space Sci., 

03 September 2020
https://doi.org/10.3389/fspas.2020.00055

Supervised classification of MMS data

ML 
labelling

SITL 
labelling

https://doi.org/10.3389/fspas.2020.00055


AI services for scientific discovery via data 
analysis

• AidaPy statistical tools package: to standardise 
operations typically done in C, IDL.

• Identification of Reconnection: different methods 
using simulation and observation together and using 
supervised ML trained on human-labelled events 
and using unsupervised methods.

• Analysis of Turbulenct structure: using 
unsupervised ML (DBSCAN)

• Explainable ML  tool for classification of in situ data: 
applied to solar wind classification 

• ML tools to analysis with the same approach 
simulation and observational data

Sisti, M, et al. "Detecting Reconnection Events in Kinetic Vlasov
Hybrid Simulations Using Clustering Techniques." ApJ, 908.1 

(2021): 107.

Class Region

0 Pristine solar wind

1 Magnetosheath (DS BS)

2 Boundary layer

3 Plasmasphere

4 Magnetosheath (DS BS)

5 Magnetosheath
6 Lobes

Innocenti  et al., Front. Astron. 
Space Sci, 2021

SOM classification of OpnGGM data

https://doi.org/10.3389/fspas.2020.571286


AI services for space 
weather 

• Supervised Classification of Plasma Regions in Near-
Earth Space: applied to MMS data using CNN

• Unsupervised Classification of incoming solar wind
using Dimensionality reduction and Self Organizing 
maps (SOM)

• Unsupervised Classification of Plasma Regions in Near-
Earth Space: applied to OpenGGCM simulations using 
SOM

• Prediction of DST index and time-warping methods to 
establish the accuracy of predicting storm times.

• Data Assimilation methods based on Kalman filters: 
application of representer technique to OpenGGCM
and EUHFORIA

• Solar image segmentation with NN: identification of 
coronal holes for space weather prediction

DST Iundex Prediction and Time Warping

Laperre et al., Front. 
Astron. Space Sci., 22 

July 2020
https://doi.org/10.3389

/fspas.2020.00039

Laperre et al. DTW for Dst Forecast Evaluation

FIGURE 4 | (A) Shows two time series we want to compare. (B) Illustrates the cumulative distance matrix, together with a warping window w and the ideal warping

path P in blue. (C) Illustrates the warping path P aligning the two time series.

FIGURE 5 | Illustration of how the warping path is determined from the

distance matrix D.

This measure does not make use of the warping cost, and
instead uses the information contained in the warping path W.
Themeasure is then able to determine how exactly a forecast time
series is shifted in time in comparison to the true or observed time
series. Take the two time seriesM andO, whereM is the predicted
time series and O the true time series.

M = [m1,m2, . . . ,mi, . . . ,mn], (18)

O = [o1, o2, . . . , oj, . . . , om]. (19)

The DTW algorithm is applied on these time series, giving a cost
matrix D of dimensions n × m. The warping constraint defined
in Equation (17) is applied, and w is set equal to the forecasting
horizon time. However, an additional constraint is included:
the warping window is restrained such that the algorithm only
compares the predictionM at t+ p with the observations O from

time t to t + p, i.e., predictions are not compared to observations
that are in the future. Applying this constraint can be done as a
modification of the warping constraint defined in Equation (17):

Letmi be the modeled value, oj the observation, then w ≥ i− j ≥ 0.
(20)

This is also illustrated in Figure 6. After computing the warping
path, we take each step pk = (ik, jk) and compute what we define
as the warp value:

!t = |ik − jk|, with !t ∈ [0, 1, . . . ,w]. (21)

Finally, a histogram is taken from all the different values of !t.
The percentages reflect how time series M is shifted compared
to time series O. We now present the results of this measure
applied to the persistence model prediction and the LSTM-NN
model prediction.

3.3. Results
3.3.1. DTW Measure Applied to the Persistence
Model
The warping measure is first applied to the forecast of the
persistence model. The persistence model can be seen as
the textbook example for this algorithm. Assuming that the
persistence model is set as follows:

Dst(t + p) = Dst(t), p ∈ N, (22)

then the algorithm should detect that almost all of the forecast
values are shifted with a time p compared to the actual
observation. The algorithm will not detect 100% of the values to
be shifted with p, because of the constraint in the DTW algorithm
that forces the beginning and the end points of the two time series
to match, as discussed in section 3.

The persistence model is applied to the test set defined in
section 2.1, and the resulting warp values are shown in Table 3.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 10 July 2020 | Volume 7 | Article 39

https://doi.org/10.3389/fspas.2020.00039
https://doi.org/10.3389/fspas.2020.00039
https://doi.org/10.3389/fspas.2020.00039


Challenges in planetary 
modelling

TerraVirtualE
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Burch et al, Science, 2016

PIC simulation

Lapenta et al, JGR, 2017.

ECSim simulation at KULeuven

Lapenta, et al., JGR 127, e2021JA030241 (2022).

Work funded by the ERC Advanced Grant TerraVirtualE



Do we need to bother with kinetic electrons?
Hybrid model (e.g. Vlasiator) Full PIC

Lapenta, et al., JGR 127, e2021JA030241 (2022).
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Electron Current
Hybrid model (fluid electrons) Full PIC (kinetic electrons)
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Lapenta, et al., JGR 127, e2021JA030241 (2022).
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The magnetic field [Fig. 3(a)] indicates a possible twist in
the Bx and By components at the time of the E∥ event. Jz
[Fig. 3(b)] has a negative excursion causing a peak in
dissipation [Fig. 3(c)]. This event, however, may be farther
away from the EDR than the event in Fig. 1.
The plots in Figs. 3(e) and 3(f) cover 10 s, during which

(from 09∶09:56 to 09∶09:58 UT) intense wave emissions are
measured in all components of E. Such emissions are
frequent on the magnetosphere side of a null in jBj or a Bz
reversal (e.g., 23). The E signal is shown for a 70 ms period
in Fig. 3(g). The E∥ signal in Fig. 3(g) is ac coupled at
65; 536 samples=s [29]. At 09∶09:57.60 a unipolar spike at
∼ − 95 mV=m (red trace) lasts for roughly 2 ms followed
by parallel fluctuations that are often adjacent to double
layers. The large fluctuations in the Ex and Ey greatly
increase the uncertainty in J · E (not shown, measured at
30 ms cadence), so we cannot conclusively determine
whether there is or is not strong dissipation in this particular
event, especially given the short duration (2 ms) of E∥.
Discussion.—The near unipolar E∥ events in Figs. 1(j)

and 3(d) differ from previous double layer observations
[37–39] in that no strong fluctuations are adjacent to the E∥
structure. Yet, the data indicate J · E > 0, which suggests a
double layer. Since Vex is >500 km=s (higher than the ion
acoustic speed) in both of those events (not displayed), it is
possible that the E∥ structures pass by the spacecraft
perpendicular to B rather than parallel to B (as often
observed [37–39]); thus, strong fluctuations associated
with accelerated electrons are not observed. It is also
possible these E∥ events are double layers that endure
for short periods so that the measured signal represents the
lifetime of the double layer.
The unipolar E∥ event in Figs. 3(f) and 3(g) has similar

characteristics to observations of double layers in the aurora
(e.g., [37]) and plasma sheet [38] in that strong fluctuations
are observed adjacent to the unipolar E∥ structure. Double
layers can develop from strong parallel currents [39] and
often imply strong dissipation (J · E > 0).
Several dozens of unipolar E∥ events have been identified

at the time of this Letter. All events are accompanied by
fluctuations in B. Since MMS high-resolution data are
selected at possible EDR regions, we do not suggest that
the occurrence of such E∥ events is limited to near an EDR.
On the other hand, strong wave activity near the EDR often
obscures identification and makes determination of
J · E > 0 difficult [e.g., Figs. 3(e) and 3(f)]. In addition, the
MMS satellites are likely to detect only a small fraction of
theE∥ structuresdue to their smallphysical size.For thisLetter,
we concentrate on E∥ events that are located near the EDR.
The proximity of E∥ events near the EDR and the

fluctuations in B suggest that these E∥ events are associated
with magnetic reconnection. The fluctuations in B suggest
flux ropes or a tangled magnetic topology, for which there
are several possible sources. One possibility is patchy
reconnection, which can develop magnetic islands in two

dimensions or flux ropes if a guide field, even small, is
present. Turbulence in the magnetosheath plasma, a
common characteristic, may also cause patchy reconnec-
tion or tangled B. Alternatively, flux ropes or tangled B
may be generated from turbulence resulting from the
reconnection process or its outflow as has been observed
in three-dimensional simulations [25,26].
The observations imply that the E∥ events are dissipating

currents that accompany B fluctuations. One hypothesis that
we explore is that the unipolar E∥ events represent secondary
reconnection, e.g., [25], that is, strong guide-field recon-
nection within a magnetic flux rope or tangled B. Once
developed, flux ropes or tangled B cannot necessarily
propagate out of the diffusion region as jets, although they
can propagate into themagnetosphere ormagnetosheath. One
possibility is that the flux ropedoes not propagate at all,which
represents island formation in two dimensions. Another
possibility, which we investigate here, is that small-scale flux
ropes or tangled B can untangle or resolve if E∥ develops.
The presence of strong, localized E∥ on just one of the

four MMS spacecraft implies that
I

E∥ · ds ≠ 0. ð1Þ

The finite integral in Eq. (1) allows a magnetic field
topology change [40,41]. Figure (4) shows a process
of untangling magnetic fields in a cylindrical case. A
localized E∥ satisfying Eq. (1) and in the direction of a
J∥ can support dissipation of the azimuthal magnetic field
(Bϕ) if ∇ × E ≠ 0. E∥ can act as secondary reconnection
only if the dissipated energy (J · E) is sufficient to relax Bϕ.
We can make a crude test from the observations, assuming
cylindrical symmetry. The energy per unit length of the Bϕ

can be represented by

WB ≃
ZRB

0

B2
ϕ

2μo
2πrdr ¼

hB2
ϕi

2μo
πR2

B ð2Þ

FIG. 4. A three-dimensional visualization of how a E∥ can
untangle a flux rope.

PRL 116, 235102 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
10 JUNE 2016

235102-4

Ergun, R. E., et al. PRL (2016): 235102.

We use a precise reconnection identifier that is 
capable of including more complex 3D reconnection 
topologies, like tangling magnetic filed lines

Vicinity of one 3D reconnection site
Lapenta, Nature Physics, January 2023.

Lorentz Reconnection indicator 
[Lapenta, ApJ 911.2 (2021): 147].
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ML Tools for clustering features: 
DBSCAN

Lapenta, Nature Physics, January 2023.
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Streaming instabilities

Kelvin
-Helmholtz

Drift Tearing

Interchange, 
Ballooning

Drift I
nstabilitie

s

Raileigh-Taylor

Anisotropy-driven

Primary 
Reconnection 
Site

Typical structure of a turbulent reconnection outflow

Lapenta, G., et al. "Local regimes of turbulence in 3D magnetic
reconnection." The Astrophysical Journal 888.2 (2020): 104.



Traditional methods: Fourier modes, structure 
functions, correlations

presence of kinetic Alfvén waves, which might be favored in
this configuration since the y–z direction is oblique to the mean
field (about 85°; Gary & Nishimura 2004). If one assumes a
turbulent cascade of KAW-like fluctuations, decorrelating on a
timescale comparable to the linear KAW period (Howes
et al. 2008), scaling arguments predict that the magnetic energy
spectrum behaves like -k 7 3 while the electric-energy spectrum
flattens to -k 1 3 (both different from the spectra observed here).
However, the strong shear here can alter and decorrelate these
waves, favoring the other explanation. The second interpreta-
tion is more qualitative and follows simple dimensional
arguments. At scales smaller than the ion skin depth, the
electric field is dominated by the Hall term and, as described in
Matteini et al. (2017), the electric fluctuation behaves like

d
d~ ( )E

V
kd B,

A
p

where VA is the characteristic Alfvén speed. If fluctuations
manifest an inertial range, then ~ a( )P k kE E and ~ a( )P k kB B.
From the above relation one gets simply that a a= + 2E B .
This relation is qualitatively observed in our case, as can be
seen from Figure 1. It is also worth remarking how the above
interpretation still holds in such an anisotropic and inhomoge-
neous system, where spectra need to be carefully extracted
removing large-scale background profiles and border effects.

2.2. Energy Exchange between Fields and Particles

The energy exchange between fields and particles is
governed by the term ·J E, where J is the total current sum
of proton and electron contributions and E is the electric field.
When = ·J EDl is positive, the energy is flowing from the
fields to the particles; when it is negative, energy is passing
from particles to fields. It is sometimes referred to as the
dissipative term, even though the energy transfer from the
magnetic field to particles is not always an irreversible process,
and so it does not strictly imply dissipation. Despite this fact,
for the purpose of our paper we will keep this definition, also
used elsewhere(Zenitani et al. 2011; Wan et al. 2012;
Olshevsky et al. 2015, 2016), and from now on we will use
Dl as a proxy for dissipation or more properly energy release

from the electromagnetic field (in the laboratory frame). A 2D
plot of Dl integrated in the z direction is shown in Figure 2.
Note that this differs from the similarly motivated dissipation
surrogate used previously in turbulence studies, e.g., Wan et al.
(2012), which computed maps of ·J E in the electron fluid
frame (Zenitani et al. 2011). As shown in other works, in
collisionless magnetic reconnection Dl is not concentrated only
around the first reconnection site(Lapenta et al. 2014, 2015).
In fact, it takes nonzero values in a wider region contained in
the outflows (panel (a)). Moreover, Dl is strongly inhomoge-
neous inside the outflows. In order to characterize this
inhomogeneity, we plotted Dl in the plane facing the outflows,
yz, at three different positions along x: d31 p, d34 p, and d37 p.
The largest values of Dl are found in the region where the
plasma ejected by reconnection encounters the ambient plasma
and is decelerated, near =x d31 p in the right outflow. Dl is
stronger in that position and decreases moving outward from
the first reconnection site in the outflow direction. Note that Dl
has in general both positive and negative values, but in the
considered region its average is always positive, indicating a
net flow of energy from fields to particles. As has been noticed
in previous studies conducted in the contest of MHD
(TanDokoro & Fujimoto 2005; Guo et al. 2014) or by means
of a kinetic model (Vapirev et al. 2013), the region of interface
between the low-density plasma ejected by magnetic reconnec-
tion and the high-density ambient plasma is unstable. Guo et al.
(2014) have interpreted that such instability has an interchange
instability where the deceleration existing between lighter and
denser plasma plays a role that is equivalent to gravity in the
Rayleigh–Taylor instability. Through a 3D MHD model of
magnetic reconnection the authors of this study related the
phenomenology of this instability to supra-arcade downflows
observed in active region coronae above post-eruption flare
arcades. It is worth noticing that, even though our study is
meant to apply to Earth’s magnetotail, the value of beta
considered in the present work, b ~ 0.8 in the asymptotic
region, is comparable to b = 0.5 in Guo et al. (2014). For this
reason it is reasonable to compare our findings obtained using a
kinetic model to what was found for MHD. We observe a
similar phenomenology to what was found by Guo et al.

Figure 1. Power spectra of magnetic (blue bullets) and electric (open red
circles) fields as a function of the perpendicular k-vector (with respect to the
reconnecting field direction). Spectra have been reduced along kx. The dotted-
dashed red line and dashed blue line indicate the behavior of the observations
for the magnetic (µ -k 8 3) and electric spectra (∝k−1), respectively.

Figure 2. Energy exchange = ·J EDl (a) in the xy plane averaged in the z
direction, and in the yz plane at (b) =x d31 p, (c) =x d34 p, and (d)
=x d37 p. The x-line is located at =x d20 p. The three boxes in panel (a) are

the ones used for the statistical analysis presented in Section 2.2.
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ML Tools: Clustering methods

21



ML scientific discovery via data analysis

G. Lapenta et al. Formation and reconnection of electron scale current layers in the turbulent outflows of a primary 
reconnection site, ApJ, 940:187 (2022). https://doi.org/10.3847/1538-4357/ac98bc 

DBSCAN identification of features in turbulent flows



Clusters of current identified by DBSCAN: 290

G. Lapenta et al. Formation and reconnection of electron scale current layers in the turbulent outflows of a primary 
reconnection site, ApJ, 940:187 (2022). https://doi.org/10.3847/1538-4357/ac98bc 



The smallest most elongated reconnect more

G. Lapenta et al. Formation and reconnection of electron scale current layers in the turbulent outflows of a primary 
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Dot size proportional to current volume

Most reconnection is at sub electron scale

Each current cluster is modelled as an ellipsoid
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The smallest most elongated reconnect more
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Energy exchanges

relation with other quantities. Dealing with 290 clusters is a lot
easier than dealing with 1200× 450/2× 300 (i.e., 81 million)

individual cells. The DBSCAN procedure has reduced
dramatically the number of the individual entities we need to
analyze. While not the most engaging activity imaginable, one
can flip through 290 things and observe them one by one. But
we will not do that and let, instead, automatic analysis run over
these 290 clusters.

4.1. Signatures of Reconnection

We consider the first three indicators of reconnection to see
what is the correlation between the current size and its
likelihood to be reconnecting. Figure 3 reports a scatter plot of
all identified currents. Each current layer is measured for its
primary size defined by fitting each layer with an ellipsoid. To
do this we used the Gaussian fit that identified the three primary
orthogonal axes of each current structure: σ1, σ2, σ3 in
decreasing order. Each current is represented with a dot sorted
by its main size (current length) and aspect ratio (between
minimum and maximum axis of the ellipsoid). Each dot is then
sized proportionally to the number of cells it encompasses and
it is colored based on three often used indicators of
reconnection: parallel electric field, E|| (panel (a)), electron
agyrotropy (panel (b); Scudder et al. 2008), and dissipation in
the electron frame, J E¢· where E¢ is the electric field in the
electron frame, E+ ve× B (panel (c); Zenitani et al. 2011).
These indicators are averages over all the cells identified by
DBSCAN as being part of one current layer. As can be
observed, the parallel electric field and agyrotropy are large
primarily at small scales, at the electron skin depth scale, or
less. We have excluded in this representation the big primary
reconnection current layer in the center of the domain because
it is of course reconnecting and well known. We focus instead
on the smaller current formations in the outflow. As can be seen
in panel (a), the parallel electric field has its highest values (in
yellow) for the smallest current layers with σ1 being the
smallest. Agyrotropy also is smallest for the same range of σ1.
The dissipation measure, J E¢· , concurs obtaining the largest
(positive and negative) values in the same range.
This analysis then suggests that the smallest layers on the

electron skin depth and smaller are the most active, producing
the most intense signature of reconnection and with the most
intense energy conversion.

4.2. Lorentz Reconnection Indicator

Recently, an alternative way has been proposed for detecting
regions of reconnection (Lapenta 2021). In the vicinity of a
reconnection point, the speed of the local Lorentz transforma-
tion that eliminates the in-plane magnetic field is of course zero
because reconnection by definition eliminates the in-plane
component of the magnetic field. However, everywhere else the
speed of this transformation is very high. When the constraint
is added to make a Lorentz transformation that maintains its
alignment with the local electric field (Lapenta 2021), this
speed can exceed even the speed of light, making the
transformation impossible. A simple method for detecting
reconnection regions is then that of computing the speed of the
local Lorentz transformation aligned with the laboratory
electric field that eliminates the component of the magnetic
field normal to the electric field:

v E B
c

c
E

. 3L
2

=
´ ( )

Figure 3. Scatter plot of the identified current layers. Each layer is
characterized with an ellipsoid with three axes: σ1, σ2, σ3, ordered in
decreasing size. The plot shows the major axis (length of the current layer) on
the abscissa and the aspect ratio of the smallest to the largest axis of each
current cluster (modeled as an ellipsoid) in the ordinate. From top to bottom:
(a) parallel electric field, (b) agyrotropy, (c) dissipation in the electron
comoving frame, all averaged over the cells comprising the current layer.
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• E’ is the electric field in 
the electron frame

• The smallest current 
structures have the 
most intense energy 
exchanges in the 
electron frame

G. Lapenta et al. Formation and reconnection of electron scale current layers in the turbulent outflows of a primary 
reconnection site, ApJ, 940:187 (2022). https://doi.org/10.3847/1538-4357/ac98bc 



Reconnection is mostly 
electron-only reconnection

G. Lapenta et al. Formation and reconnection of electron scale current layers in the turbulent outflows of a primary 
reconnection site, ApJ, 940:187 (2022). https://doi.org/10.3847/1538-4357/ac98bc 

Dot size proportional to current volume

The electron current dominates in the high agyrotropy layers
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Analysis of velocity distributions: GMM



ML Tools for different type of data-sets
Velocity or energy distributions, f(v1, v2, v3)

• Identifying reconnection from its impact on 
the distribution functions

• This is a new rarely tried approach, 
spurred by the discovery of crescents and 
the role of electron agyrotropy.

29

2 Proposed Research, Methodology, and Work Plan

2.1 Methodology for Analyzing Compound Distributions

The following techniques will be employed in our proposed research to analyze velocity distribu-
tions from observation and from PIC simulations in order to determine their compound structure.

2.1.1 Preprocessing of MMS Sky Map Data

The FPI sky maps take the form of a distribution function over a 16⇥32⇥32 grid in q , j , E space
where E is the logarithmically spaced energy in eV. While the value of the distribution function
can be interpolated directly onto a Cartesian velocity-space grid, we employ an intermediate step
whereby the logarithm of the distribution on a shell of constant E is fit to a superposition of
spherical harmonics Y`m(q ,j) up to a predetermined order `max. In the examples presented here we
use `max = 13 for which there are (`max +1)2 = 196 parameters (i.e., Y`m amplitude coefficients).

Figure 3: (left) 2D slice of electron crescent distri-
bution in vk–v?1 plane from Burch et al. (2016a) af-
ter applying spherical-harmonic smoothing. (right)
Background distribution using method described in
text.

The reconstruction of the distribution on each
energy shell from the corresponding Y`m(q ,j)
is then used for the interpolation onto the
predetermined Cartesian velocity-space grid.
Field-aligned coordinates (FAC) can be chosen
to orient the principal axis (nominally along z)
to be parallel to B. In this case, {vx,vy,vz} in
the following description should be interpreted
as {v?1,v?2,vk}. As a validation, we con-
firm that we recover the standard FPI moments
from our reconstructions (e.g., the agreement
between the red and blue curves in Fig. 1b).
We have implemented a Monte Carlo code in
Matlab®to generate an ensemble of equally
weighted particles from the distribution function on a Cartesian grid when needed (e.g., for the
k-means decomposition described in Sec. 2.1.2).

Because the presence of suprathermal halo populations can be an important feature of compound
distributions, we have implemented a simple procedure for initially isolating the non-halo core
distribution, which is often characterized by multiple discrete beams. This procedure is illustrated
in Fig. 3 in which a compound electron distribution containing a crescent population from Burch
et al. (2016a) is treated a superposition of a background plus a core population (left) in which
the background fbkg(v) = min[ f (v), fc]. Here, fc defines a cutoff so that fbkg plays the role of a
pedestal on which the core distribution fcore(v) = f (v)� fbkg(v) sits.

Similar methodology applies when working with distributions from PIC simulations. Here, the
distribution of particles (which may have nonuniform weights) within a specified spatial region is
first accumulated onto a Cartesian velocity-space grid, after which satellite and simulation data are
treated equivalently.

7
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Why is data from the velocity distribution rarely used?

Typical simulation:
• 200x200x200 grid with 1000 particles per cell per species
• The grid is about 2GB of data per time step (considering all cells and all 

fields: B, E, n, p, V per species)
• The particles instead are about 1TB of data for each time step.
• Discerning patterns in the particle data is a tremendous challenge
• ML tools can be a game changer.
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FPI instrument on 
MMS

Goldman, M. V., et al. JGR 125.12 (2020): e2020JA028340.



Analyzing distributions

l Building an estimate of the probability density function  

l Non-parametric methods
- Histogram
- Kernel Density Estimation
- K-means
- Fuzzy C-means
- DBscan

l Parametric methods
- Fitting given distributions
- Gaussian Mixture Models (GMM)

Dupuis, R., et al(2020). ApJ, 889(1), 22.32
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• Akaike information criterion (AIC):
AIC = 2k - 2 ln(L) 

• Bayesian information criterion 
BIC = ln(n)k - 2 ln(L), 

• k is the number of parameters to 
estimate in the model 

• L the likelihood 

GMM: Automatic selection of the number of gaussian 
beams

k

Dupuis, R., et al(2020). ApJ, 889(1), 22.



Using ML based on particle 
distributions  

varying weights are investigated in this paper. Therefore, the
algorithm takes into account the weight of each electron.

Figure 2 compares the number of components identified by the
detection algorithm in the left column with the measure of
gyrotropy in the right column for various time steps. The objective
is to highlight the behavior of the two quantities when the
reconnection grows. Considering first the number of components,
different structures are observed. Indeed, it can be clearly stated
that it is not only the EDR, identified by the peak of Q, that is
detected but also a much wider panel of different regions, which
are symmetric with respect to the central plane y=10. The GMM
algorithm seems to locate inflows, ion diffusion region and EDRs,
outflow, and separatrix boundaries. Another striking result of
Figure 2 is the capability of the algorithm to detect regions where
the influence of the reconnection seems to be weak, such as far
upstream of the X line and near the O point. The noise of the PIC
simulations is filtered out and unique distributions are successfully
recognized for distributions with a single component. Starting with

the first time step t=8000, a large background tagged with two
components extends from y≈7 to y≈13 and surrounds the EDR
located at x≈7. This region may correspond to the ion diffusion
region. The EDR is mainly composed of mixtures with five and
four components, highlighting complex velocity distributions. The
GMM analysis in this region is expected to be related to the results
provided by Swisdak’s measure of the gyrotropy. Both methods
focus on the non-Maxwellianity and complexity of the distribu-
tions, through the moments for the measure of gyrotropy and
directly by estimating the underlying probability density function
for the GMM method. Downstream from the EDR in the outflow,
a C-shape structure is noticeable on each side, characterized by
distributions with four and five components connecting the EDR
with the separatrix region. The latter is mainly composed of
distributions with two and three components.
With regard to the three other time steps t=12,000,

t=16,000, and t=20,000, they show very similar structures
and behaviors. The size of the EDR tends to slightly increase in

Figure 2. Magnetic reconnection detection for the double Harris sheet case with a guide field value of 0.1 at four different time steps, from top to bottom: t=8000,
t=12,000, t=16,000, and t=20,000. The left column presents the number of components provided by the BIC optimization, and the right column shows the measure of
gyrotropy Q defined inEquation (1). The red rectangles indicates the location where specific distributions are observed. They merge four GMM cells in the x-direction and
two GMM cells in the y-direction.
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Figure 4. Electron velocity distribution for the double Harris sheet case at t=20,000. Each row corresponds to one of the five red rectangles depicted in Figure 2.
Three 2D marginal distributions are presented: vP−v⊥1, vP−v⊥2, and v⊥1−v⊥2. The white ellipses illustrate the different Gaussians of the mixtures in each distribution.
The transparency is determined by the weight of each Gaussian: no transparency for a weight of 1 and a full transparency for a zero weight. The red ellipses give the
mean and variance for a single distribution.
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varying weights are investigated in this paper. Therefore, the
algorithm takes into account the weight of each electron.

Figure 2 compares the number of components identified by the
detection algorithm in the left column with the measure of
gyrotropy in the right column for various time steps. The objective
is to highlight the behavior of the two quantities when the
reconnection grows. Considering first the number of components,
different structures are observed. Indeed, it can be clearly stated
that it is not only the EDR, identified by the peak of Q, that is
detected but also a much wider panel of different regions, which
are symmetric with respect to the central plane y=10. The GMM
algorithm seems to locate inflows, ion diffusion region and EDRs,
outflow, and separatrix boundaries. Another striking result of
Figure 2 is the capability of the algorithm to detect regions where
the influence of the reconnection seems to be weak, such as far
upstream of the X line and near the O point. The noise of the PIC
simulations is filtered out and unique distributions are successfully
recognized for distributions with a single component. Starting with

the first time step t=8000, a large background tagged with two
components extends from y≈7 to y≈13 and surrounds the EDR
located at x≈7. This region may correspond to the ion diffusion
region. The EDR is mainly composed of mixtures with five and
four components, highlighting complex velocity distributions. The
GMM analysis in this region is expected to be related to the results
provided by Swisdak’s measure of the gyrotropy. Both methods
focus on the non-Maxwellianity and complexity of the distribu-
tions, through the moments for the measure of gyrotropy and
directly by estimating the underlying probability density function
for the GMM method. Downstream from the EDR in the outflow,
a C-shape structure is noticeable on each side, characterized by
distributions with four and five components connecting the EDR
with the separatrix region. The latter is mainly composed of
distributions with two and three components.
With regard to the three other time steps t=12,000,

t=16,000, and t=20,000, they show very similar structures
and behaviors. The size of the EDR tends to slightly increase in

Figure 2. Magnetic reconnection detection for the double Harris sheet case with a guide field value of 0.1 at four different time steps, from top to bottom: t=8000,
t=12,000, t=16,000, and t=20,000. The left column presents the number of components provided by the BIC optimization, and the right column shows the measure of
gyrotropy Q defined inEquation (1). The red rectangles indicates the location where specific distributions are observed. They merge four GMM cells in the x-direction and
two GMM cells in the y-direction.
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Types of distrubutions(GMM)

Agyrotropy

Dupuis, R., et al(2020). ApJ, 889(1), 22.
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• Fluid thermal energy:

• Multibeam thermal energy

• Drop in thermal energy

• Pseudo (False) thermal energy

Effect on the definition of thermal energy

(BIC; Anderson 2002):

( )
( ) ( ) ( )

� �
� �

k L
n k L

AIC 2 2 ln
BIC ln 2 ln , 13

where k is the number of parameters to estimate in the model
and L the likelihood. In cases of weighted particles, the number
of particles n corresponds to the weighted number of particles.
BIC penalizes the model complexity more than AIC. However,
AIC and BIC performances depend on the nature of the data
generating the model: sample size, complexity of the model,
whether the true model is contained in the model set or not, etc.
(Anderson 2002). As data from simulations may be noisy and
the number of particles is significant, BIC has been preferred in
this work to automatically select the number of components of
the mixture. Special attention should be paid to the number of
particles n, which can be arbitrarily large for PIC simulations.
On the one hand, a very small number of particles would lead
to noisy distributions and a BIC parameter with a weak
penalization for complex models. In this case, some compo-
nents may only fit noise. On the other hand, a very large
number of particles may overpenalize models with several
components. From the authors’ experience, typical numbers of
particles between 1000 and 10,000 seem to be acceptable. It
may be interesting to compare these numbers of particles with
missions such as MMS or Cluster.

Nevertheless, the physical meaning of the number of
components K and the parameters associated with each
Gaussian must be analyzed carefully as they must not be
necessarily interpreted as specific beams or electron popula-
tions. Indeed, if the data show complex shapes or are not near
Gaussian, the number of components K does not correspond to
the number of different populations (Ivezić et al. 2014). For
instance, a flat-top distribution is approximated by several
Gaussians, but each component is needed to approach the
broad mode of the distribution. A Kappa distribution can also
be represented by a central Gaussian centered around the mode
plus another Gaussian with a very large width to fit the wide
tail, thus two Gaussians are needed for a single population.
Moreover, as presented previously, BIC is sensitive to various
parameters: the data themselves and the sample size. For
instance, if the source of the data does not change but the
number of samples increased, the resulting number of
components may also change. However, BIC is still an efficient
criterion for providing a statistical analysis based on the
underlying properties of the data. It can help detect important
variations in the distribution. Another strategy consists of
fixing the number of components to a high value in order to
improve the fit for very complex distributions, which can show
poor results for a small number of components. In this case,
GMM is very close to a nonparametric density estimation
method, such as KDE. Such strategy is illustrated in
Appendix C.

4.3. Thermal Energy Variation

As the particle distributions are approximated by sums of
Gaussians instead of a single Maxwellian, it is interesting to
analyze the variation of the thermal velocity for these two
representations. The thermal energy for a single velocity
distribution is given by its variance. The straight measure of

thermal energy based on the moment of the whole distribution is
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The variance (σ2)(K ) for K multiple Maxwellians is given by
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The first term can be interpreted as the mixture of the variances
and is related to the thermal energy per unit mass of the
mixture. Therefore, it is written as the thermal energy (per unit
mass) of the K multiple Maxwellians:
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The thermal energy ratio Edrop is derived to compute the
reduction in thermal speed for the particles, aiming to
distinguish heating from accelerating particles into beams. It
measures the ratio between the mixture of the variance and the
variance of the velocity distribution:
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This metric is defined to always be below 1. Low values
indicate that the thermal energy of the mixture is much smaller
than the thermal velocity computed directly from the definition,
suggesting that the second-order moment of the overall
distribution is not a good indicator of the conditions present.
An extreme example is that of two cold beams which
individually have zero thermal spread and only a relative mean
velocity but when taken together appear as a broad thermal
spread. This measure identifies these conditions, spotting
distributions characterized by interpenetrating beams.
The last two terms ofEquation (15) can be read as the

deviation of each mean compared to the overall mixture mean:
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This deviation is always positive as it corresponds to a
weighted variance. This is the thermal energy of the center of
all beams, measuring the distance between them. A second
metric Edev, called the thermal velocity deviation, defines the
ratio between the velocity deviation for the mixture and the
classical thermal velocity of the distribution:
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This strictly positive quantity allows the different mixtures to
be interpreted. High values mean the components are widely
separated and presumably have a distinct identity and perhaps
origin (Eastwood et al. 2015). Small values point to mixtures
of components close to each other and perhaps carry less
meaningful separation.
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(BIC; Anderson 2002):
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where k is the number of parameters to estimate in the model
and L the likelihood. In cases of weighted particles, the number
of particles n corresponds to the weighted number of particles.
BIC penalizes the model complexity more than AIC. However,
AIC and BIC performances depend on the nature of the data
generating the model: sample size, complexity of the model,
whether the true model is contained in the model set or not, etc.
(Anderson 2002). As data from simulations may be noisy and
the number of particles is significant, BIC has been preferred in
this work to automatically select the number of components of
the mixture. Special attention should be paid to the number of
particles n, which can be arbitrarily large for PIC simulations.
On the one hand, a very small number of particles would lead
to noisy distributions and a BIC parameter with a weak
penalization for complex models. In this case, some compo-
nents may only fit noise. On the other hand, a very large
number of particles may overpenalize models with several
components. From the authors’ experience, typical numbers of
particles between 1000 and 10,000 seem to be acceptable. It
may be interesting to compare these numbers of particles with
missions such as MMS or Cluster.

Nevertheless, the physical meaning of the number of
components K and the parameters associated with each
Gaussian must be analyzed carefully as they must not be
necessarily interpreted as specific beams or electron popula-
tions. Indeed, if the data show complex shapes or are not near
Gaussian, the number of components K does not correspond to
the number of different populations (Ivezić et al. 2014). For
instance, a flat-top distribution is approximated by several
Gaussians, but each component is needed to approach the
broad mode of the distribution. A Kappa distribution can also
be represented by a central Gaussian centered around the mode
plus another Gaussian with a very large width to fit the wide
tail, thus two Gaussians are needed for a single population.
Moreover, as presented previously, BIC is sensitive to various
parameters: the data themselves and the sample size. For
instance, if the source of the data does not change but the
number of samples increased, the resulting number of
components may also change. However, BIC is still an efficient
criterion for providing a statistical analysis based on the
underlying properties of the data. It can help detect important
variations in the distribution. Another strategy consists of
fixing the number of components to a high value in order to
improve the fit for very complex distributions, which can show
poor results for a small number of components. In this case,
GMM is very close to a nonparametric density estimation
method, such as KDE. Such strategy is illustrated in
Appendix C.

4.3. Thermal Energy Variation

As the particle distributions are approximated by sums of
Gaussians instead of a single Maxwellian, it is interesting to
analyze the variation of the thermal velocity for these two
representations. The thermal energy for a single velocity
distribution is given by its variance. The straight measure of

thermal energy based on the moment of the whole distribution is
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The variance (σ2)(K ) for K multiple Maxwellians is given by
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The first term can be interpreted as the mixture of the variances
and is related to the thermal energy per unit mass of the
mixture. Therefore, it is written as the thermal energy (per unit
mass) of the K multiple Maxwellians:
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The thermal energy ratio Edrop is derived to compute the
reduction in thermal speed for the particles, aiming to
distinguish heating from accelerating particles into beams. It
measures the ratio between the mixture of the variance and the
variance of the velocity distribution:
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This metric is defined to always be below 1. Low values
indicate that the thermal energy of the mixture is much smaller
than the thermal velocity computed directly from the definition,
suggesting that the second-order moment of the overall
distribution is not a good indicator of the conditions present.
An extreme example is that of two cold beams which
individually have zero thermal spread and only a relative mean
velocity but when taken together appear as a broad thermal
spread. This measure identifies these conditions, spotting
distributions characterized by interpenetrating beams.
The last two terms ofEquation (15) can be read as the

deviation of each mean compared to the overall mixture mean:
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This deviation is always positive as it corresponds to a
weighted variance. This is the thermal energy of the center of
all beams, measuring the distance between them. A second
metric Edev, called the thermal velocity deviation, defines the
ratio between the velocity deviation for the mixture and the
classical thermal velocity of the distribution:
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This strictly positive quantity allows the different mixtures to
be interpreted. High values mean the components are widely
separated and presumably have a distinct identity and perhaps
origin (Eastwood et al. 2015). Small values point to mixtures
of components close to each other and perhaps carry less
meaningful separation.
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(BIC; Anderson 2002):
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k L
n k L

AIC 2 2 ln
BIC ln 2 ln , 13

where k is the number of parameters to estimate in the model
and L the likelihood. In cases of weighted particles, the number
of particles n corresponds to the weighted number of particles.
BIC penalizes the model complexity more than AIC. However,
AIC and BIC performances depend on the nature of the data
generating the model: sample size, complexity of the model,
whether the true model is contained in the model set or not, etc.
(Anderson 2002). As data from simulations may be noisy and
the number of particles is significant, BIC has been preferred in
this work to automatically select the number of components of
the mixture. Special attention should be paid to the number of
particles n, which can be arbitrarily large for PIC simulations.
On the one hand, a very small number of particles would lead
to noisy distributions and a BIC parameter with a weak
penalization for complex models. In this case, some compo-
nents may only fit noise. On the other hand, a very large
number of particles may overpenalize models with several
components. From the authors’ experience, typical numbers of
particles between 1000 and 10,000 seem to be acceptable. It
may be interesting to compare these numbers of particles with
missions such as MMS or Cluster.

Nevertheless, the physical meaning of the number of
components K and the parameters associated with each
Gaussian must be analyzed carefully as they must not be
necessarily interpreted as specific beams or electron popula-
tions. Indeed, if the data show complex shapes or are not near
Gaussian, the number of components K does not correspond to
the number of different populations (Ivezić et al. 2014). For
instance, a flat-top distribution is approximated by several
Gaussians, but each component is needed to approach the
broad mode of the distribution. A Kappa distribution can also
be represented by a central Gaussian centered around the mode
plus another Gaussian with a very large width to fit the wide
tail, thus two Gaussians are needed for a single population.
Moreover, as presented previously, BIC is sensitive to various
parameters: the data themselves and the sample size. For
instance, if the source of the data does not change but the
number of samples increased, the resulting number of
components may also change. However, BIC is still an efficient
criterion for providing a statistical analysis based on the
underlying properties of the data. It can help detect important
variations in the distribution. Another strategy consists of
fixing the number of components to a high value in order to
improve the fit for very complex distributions, which can show
poor results for a small number of components. In this case,
GMM is very close to a nonparametric density estimation
method, such as KDE. Such strategy is illustrated in
Appendix C.

4.3. Thermal Energy Variation

As the particle distributions are approximated by sums of
Gaussians instead of a single Maxwellian, it is interesting to
analyze the variation of the thermal velocity for these two
representations. The thermal energy for a single velocity
distribution is given by its variance. The straight measure of

thermal energy based on the moment of the whole distribution is
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The variance (σ2)(K ) for K multiple Maxwellians is given by
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The first term can be interpreted as the mixture of the variances
and is related to the thermal energy per unit mass of the
mixture. Therefore, it is written as the thermal energy (per unit
mass) of the K multiple Maxwellians:
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The thermal energy ratio Edrop is derived to compute the
reduction in thermal speed for the particles, aiming to
distinguish heating from accelerating particles into beams. It
measures the ratio between the mixture of the variance and the
variance of the velocity distribution:
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This metric is defined to always be below 1. Low values
indicate that the thermal energy of the mixture is much smaller
than the thermal velocity computed directly from the definition,
suggesting that the second-order moment of the overall
distribution is not a good indicator of the conditions present.
An extreme example is that of two cold beams which
individually have zero thermal spread and only a relative mean
velocity but when taken together appear as a broad thermal
spread. This measure identifies these conditions, spotting
distributions characterized by interpenetrating beams.
The last two terms ofEquation (15) can be read as the

deviation of each mean compared to the overall mixture mean:
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This deviation is always positive as it corresponds to a
weighted variance. This is the thermal energy of the center of
all beams, measuring the distance between them. A second
metric Edev, called the thermal velocity deviation, defines the
ratio between the velocity deviation for the mixture and the
classical thermal velocity of the distribution:
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This strictly positive quantity allows the different mixtures to
be interpreted. High values mean the components are widely
separated and presumably have a distinct identity and perhaps
origin (Eastwood et al. 2015). Small values point to mixtures
of components close to each other and perhaps carry less
meaningful separation.
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the x-direction over the time while the extent of the ion
diffusion region remains steady. The outflow region is still
clearly identified, and its location remains quite steady. The
reconnection gives rise to a clear magnetic island on the right
side of the figure at these time steps. The thickness of the
region around the O point tends to increase dramatically in the
y-direction when the reconnection grows. Several different
distribution types can be observed, leading to a rather noisy
mix with a background with two components and some with
three and four components. Moreover, secondary structures
gradually appear near the O point, creating a link between the
bottom and the top layers of the island. Finally, two concentric
ellipses can be observed at t = 20,000. They are composed of
three components for the outer ellipse and two components for
the inner ellipse. It is important to note that no spatial
constraints or correlations are imposed on the detection
algorithm, thus all the structures identified by the BIC
minimization may exist in the distributions.

All of the results provided by the detection algorithm are then
compared to the values of Q depicted in the right column in
Figure 2 for the same time steps. A few similarities are observed:
the measure of gyrotropy clearly highlights the EDR for all time
steps with peak values observed above 0.5, and topological
boundaries of the reconnection are also mapped, almost coinciding
with the boundaries of the GMM algorithm with slight differences.
However, different behaviors compared to the detection algorithm
are exhibited. For instance, the region surrounding the EDR is not
diagnosed by the measure of gyrotropy as well as the outflow and
inner structures around the O point. Small artifacts seem to be
present within the topological boundaries, but the background
noise prevents them from being clearly identified. Indeed, the
measure of gyrotropy is not exactly zero for regions far away from
the reconnection with a background noise around 0.1, while the
detection algorithm clearly identifies single distributions.
Figure 3 displays Edrop and Edev in order to support the

analysis of the number of components, helping to make

Figure 3. The left column highlights the energy drop Edrop defined byEquation (17), and the right column depicts the energy deviation Edev given byEquation (19).
Both quantities are presented at four different time steps, from top to bottom: t=8000, t=12,000, t=16,000, and t=20,000.
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(BIC; Anderson 2002):

( )
( ) ( ) ( )

� �
� �

k L
n k L

AIC 2 2 ln
BIC ln 2 ln , 13

where k is the number of parameters to estimate in the model
and L the likelihood. In cases of weighted particles, the number
of particles n corresponds to the weighted number of particles.
BIC penalizes the model complexity more than AIC. However,
AIC and BIC performances depend on the nature of the data
generating the model: sample size, complexity of the model,
whether the true model is contained in the model set or not, etc.
(Anderson 2002). As data from simulations may be noisy and
the number of particles is significant, BIC has been preferred in
this work to automatically select the number of components of
the mixture. Special attention should be paid to the number of
particles n, which can be arbitrarily large for PIC simulations.
On the one hand, a very small number of particles would lead
to noisy distributions and a BIC parameter with a weak
penalization for complex models. In this case, some compo-
nents may only fit noise. On the other hand, a very large
number of particles may overpenalize models with several
components. From the authors’ experience, typical numbers of
particles between 1000 and 10,000 seem to be acceptable. It
may be interesting to compare these numbers of particles with
missions such as MMS or Cluster.

Nevertheless, the physical meaning of the number of
components K and the parameters associated with each
Gaussian must be analyzed carefully as they must not be
necessarily interpreted as specific beams or electron popula-
tions. Indeed, if the data show complex shapes or are not near
Gaussian, the number of components K does not correspond to
the number of different populations (Ivezić et al. 2014). For
instance, a flat-top distribution is approximated by several
Gaussians, but each component is needed to approach the
broad mode of the distribution. A Kappa distribution can also
be represented by a central Gaussian centered around the mode
plus another Gaussian with a very large width to fit the wide
tail, thus two Gaussians are needed for a single population.
Moreover, as presented previously, BIC is sensitive to various
parameters: the data themselves and the sample size. For
instance, if the source of the data does not change but the
number of samples increased, the resulting number of
components may also change. However, BIC is still an efficient
criterion for providing a statistical analysis based on the
underlying properties of the data. It can help detect important
variations in the distribution. Another strategy consists of
fixing the number of components to a high value in order to
improve the fit for very complex distributions, which can show
poor results for a small number of components. In this case,
GMM is very close to a nonparametric density estimation
method, such as KDE. Such strategy is illustrated in
Appendix C.

4.3. Thermal Energy Variation

As the particle distributions are approximated by sums of
Gaussians instead of a single Maxwellian, it is interesting to
analyze the variation of the thermal velocity for these two
representations. The thermal energy for a single velocity
distribution is given by its variance. The straight measure of

thermal energy based on the moment of the whole distribution is
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The variance (σ2)(K ) for K multiple Maxwellians is given by
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The first term can be interpreted as the mixture of the variances
and is related to the thermal energy per unit mass of the
mixture. Therefore, it is written as the thermal energy (per unit
mass) of the K multiple Maxwellians:
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The thermal energy ratio Edrop is derived to compute the
reduction in thermal speed for the particles, aiming to
distinguish heating from accelerating particles into beams. It
measures the ratio between the mixture of the variance and the
variance of the velocity distribution:
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This metric is defined to always be below 1. Low values
indicate that the thermal energy of the mixture is much smaller
than the thermal velocity computed directly from the definition,
suggesting that the second-order moment of the overall
distribution is not a good indicator of the conditions present.
An extreme example is that of two cold beams which
individually have zero thermal spread and only a relative mean
velocity but when taken together appear as a broad thermal
spread. This measure identifies these conditions, spotting
distributions characterized by interpenetrating beams.
The last two terms ofEquation (15) can be read as the

deviation of each mean compared to the overall mixture mean:
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This deviation is always positive as it corresponds to a
weighted variance. This is the thermal energy of the center of
all beams, measuring the distance between them. A second
metric Edev, called the thermal velocity deviation, defines the
ratio between the velocity deviation for the mixture and the
classical thermal velocity of the distribution:
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This strictly positive quantity allows the different mixtures to
be interpreted. High values mean the components are widely
separated and presumably have a distinct identity and perhaps
origin (Eastwood et al. 2015). Small values point to mixtures
of components close to each other and perhaps carry less
meaningful separation.
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(BIC; Anderson 2002):
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( ) ( ) ( )

� �
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k L
n k L

AIC 2 2 ln
BIC ln 2 ln , 13

where k is the number of parameters to estimate in the model
and L the likelihood. In cases of weighted particles, the number
of particles n corresponds to the weighted number of particles.
BIC penalizes the model complexity more than AIC. However,
AIC and BIC performances depend on the nature of the data
generating the model: sample size, complexity of the model,
whether the true model is contained in the model set or not, etc.
(Anderson 2002). As data from simulations may be noisy and
the number of particles is significant, BIC has been preferred in
this work to automatically select the number of components of
the mixture. Special attention should be paid to the number of
particles n, which can be arbitrarily large for PIC simulations.
On the one hand, a very small number of particles would lead
to noisy distributions and a BIC parameter with a weak
penalization for complex models. In this case, some compo-
nents may only fit noise. On the other hand, a very large
number of particles may overpenalize models with several
components. From the authors’ experience, typical numbers of
particles between 1000 and 10,000 seem to be acceptable. It
may be interesting to compare these numbers of particles with
missions such as MMS or Cluster.

Nevertheless, the physical meaning of the number of
components K and the parameters associated with each
Gaussian must be analyzed carefully as they must not be
necessarily interpreted as specific beams or electron popula-
tions. Indeed, if the data show complex shapes or are not near
Gaussian, the number of components K does not correspond to
the number of different populations (Ivezić et al. 2014). For
instance, a flat-top distribution is approximated by several
Gaussians, but each component is needed to approach the
broad mode of the distribution. A Kappa distribution can also
be represented by a central Gaussian centered around the mode
plus another Gaussian with a very large width to fit the wide
tail, thus two Gaussians are needed for a single population.
Moreover, as presented previously, BIC is sensitive to various
parameters: the data themselves and the sample size. For
instance, if the source of the data does not change but the
number of samples increased, the resulting number of
components may also change. However, BIC is still an efficient
criterion for providing a statistical analysis based on the
underlying properties of the data. It can help detect important
variations in the distribution. Another strategy consists of
fixing the number of components to a high value in order to
improve the fit for very complex distributions, which can show
poor results for a small number of components. In this case,
GMM is very close to a nonparametric density estimation
method, such as KDE. Such strategy is illustrated in
Appendix C.

4.3. Thermal Energy Variation

As the particle distributions are approximated by sums of
Gaussians instead of a single Maxwellian, it is interesting to
analyze the variation of the thermal velocity for these two
representations. The thermal energy for a single velocity
distribution is given by its variance. The straight measure of

thermal energy based on the moment of the whole distribution is
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The variance (σ2)(K ) for K multiple Maxwellians is given by

( ) ( ) ( ) ( )

( )

( )
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥� � � �T N NT � � �

� � � �

w w w .

15

k k k
K

i k

K

k
k

K

k
k

K

k

i

2

1

3

1

2 2

1

2

1

2

The first term can be interpreted as the mixture of the variances
and is related to the thermal energy per unit mass of the
mixture. Therefore, it is written as the thermal energy (per unit
mass) of the K multiple Maxwellians:
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The thermal energy ratio Edrop is derived to compute the
reduction in thermal speed for the particles, aiming to
distinguish heating from accelerating particles into beams. It
measures the ratio between the mixture of the variance and the
variance of the velocity distribution:
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This metric is defined to always be below 1. Low values
indicate that the thermal energy of the mixture is much smaller
than the thermal velocity computed directly from the definition,
suggesting that the second-order moment of the overall
distribution is not a good indicator of the conditions present.
An extreme example is that of two cold beams which
individually have zero thermal spread and only a relative mean
velocity but when taken together appear as a broad thermal
spread. This measure identifies these conditions, spotting
distributions characterized by interpenetrating beams.
The last two terms ofEquation (15) can be read as the

deviation of each mean compared to the overall mixture mean:
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This deviation is always positive as it corresponds to a
weighted variance. This is the thermal energy of the center of
all beams, measuring the distance between them. A second
metric Edev, called the thermal velocity deviation, defines the
ratio between the velocity deviation for the mixture and the
classical thermal velocity of the distribution:
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This strictly positive quantity allows the different mixtures to
be interpreted. High values mean the components are widely
separated and presumably have a distinct identity and perhaps
origin (Eastwood et al. 2015). Small values point to mixtures
of components close to each other and perhaps carry less
meaningful separation.
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(BIC; Anderson 2002):
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AIC 2 2 ln
BIC ln 2 ln , 13

where k is the number of parameters to estimate in the model
and L the likelihood. In cases of weighted particles, the number
of particles n corresponds to the weighted number of particles.
BIC penalizes the model complexity more than AIC. However,
AIC and BIC performances depend on the nature of the data
generating the model: sample size, complexity of the model,
whether the true model is contained in the model set or not, etc.
(Anderson 2002). As data from simulations may be noisy and
the number of particles is significant, BIC has been preferred in
this work to automatically select the number of components of
the mixture. Special attention should be paid to the number of
particles n, which can be arbitrarily large for PIC simulations.
On the one hand, a very small number of particles would lead
to noisy distributions and a BIC parameter with a weak
penalization for complex models. In this case, some compo-
nents may only fit noise. On the other hand, a very large
number of particles may overpenalize models with several
components. From the authors’ experience, typical numbers of
particles between 1000 and 10,000 seem to be acceptable. It
may be interesting to compare these numbers of particles with
missions such as MMS or Cluster.

Nevertheless, the physical meaning of the number of
components K and the parameters associated with each
Gaussian must be analyzed carefully as they must not be
necessarily interpreted as specific beams or electron popula-
tions. Indeed, if the data show complex shapes or are not near
Gaussian, the number of components K does not correspond to
the number of different populations (Ivezić et al. 2014). For
instance, a flat-top distribution is approximated by several
Gaussians, but each component is needed to approach the
broad mode of the distribution. A Kappa distribution can also
be represented by a central Gaussian centered around the mode
plus another Gaussian with a very large width to fit the wide
tail, thus two Gaussians are needed for a single population.
Moreover, as presented previously, BIC is sensitive to various
parameters: the data themselves and the sample size. For
instance, if the source of the data does not change but the
number of samples increased, the resulting number of
components may also change. However, BIC is still an efficient
criterion for providing a statistical analysis based on the
underlying properties of the data. It can help detect important
variations in the distribution. Another strategy consists of
fixing the number of components to a high value in order to
improve the fit for very complex distributions, which can show
poor results for a small number of components. In this case,
GMM is very close to a nonparametric density estimation
method, such as KDE. Such strategy is illustrated in
Appendix C.

4.3. Thermal Energy Variation

As the particle distributions are approximated by sums of
Gaussians instead of a single Maxwellian, it is interesting to
analyze the variation of the thermal velocity for these two
representations. The thermal energy for a single velocity
distribution is given by its variance. The straight measure of
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The variance (σ2)(K ) for K multiple Maxwellians is given by
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The first term can be interpreted as the mixture of the variances
and is related to the thermal energy per unit mass of the
mixture. Therefore, it is written as the thermal energy (per unit
mass) of the K multiple Maxwellians:
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The thermal energy ratio Edrop is derived to compute the
reduction in thermal speed for the particles, aiming to
distinguish heating from accelerating particles into beams. It
measures the ratio between the mixture of the variance and the
variance of the velocity distribution:
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This metric is defined to always be below 1. Low values
indicate that the thermal energy of the mixture is much smaller
than the thermal velocity computed directly from the definition,
suggesting that the second-order moment of the overall
distribution is not a good indicator of the conditions present.
An extreme example is that of two cold beams which
individually have zero thermal spread and only a relative mean
velocity but when taken together appear as a broad thermal
spread. This measure identifies these conditions, spotting
distributions characterized by interpenetrating beams.
The last two terms ofEquation (15) can be read as the

deviation of each mean compared to the overall mixture mean:
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This deviation is always positive as it corresponds to a
weighted variance. This is the thermal energy of the center of
all beams, measuring the distance between them. A second
metric Edev, called the thermal velocity deviation, defines the
ratio between the velocity deviation for the mixture and the
classical thermal velocity of the distribution:
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This strictly positive quantity allows the different mixtures to
be interpreted. High values mean the components are widely
separated and presumably have a distinct identity and perhaps
origin (Eastwood et al. 2015). Small values point to mixtures
of components close to each other and perhaps carry less
meaningful separation.
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To know more

üAIDA: http://www.aida-space.eu

üASAP: http://www.asap-space.eu

http://www.aida-space.eu/
http://www.asap-space.eu/publications
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