TID nowcasting – MSTIDs

Tobias G.W. Verhulst

STCE - Royal Meteorological Institute of Belgium

Joint Рітніа-NRF & T-FORS school KU Leuven 8 February 2024

Solar-Terrestrial

Processing of Doppler sounder data

3 TID detection & characterization

Accessing CDSS data in the PITHIA portal

It is possible to detect MSTIDs in ionograms...

...but:

- on the limit of time resolution,
- no TID characteristics (amplitude, periods,...),
- not automated, not in real time.

Simultaneous Doppler sounding at multiple frequencies (with additional height information from a nearby ionosonde) provide continuous

Doppler shift can be affected by many things:

$$\Delta f = -\frac{2f}{c} \int_0^h \frac{\partial \mu}{\partial n_e} \frac{\partial n_e}{\partial t} dr$$

Assuming the only relevant process is plasma movement, this is highly simplified:

$$\Delta f = -\frac{2f}{c}v_p$$

CDSS configuration

Some important aspects of the CDSS installation:

- Each Tx/Rx combination provides one measurement.
- Multiple Rx's can listen to the same Tx, and multiple Tx's received by the same Rx.
- Measurements are done on oblique paths, from tens to over one hundred km distances.
- Each link uses a slightly different frequency, to allow distinguishing signals.
- Different frequencies can be employed to cover day and night.

CDSS data

Receiver samples the incoming signal at more than 300 Hz.

The data collected from CDSS instruments are spectrograms.

T. Verhulst (RMI/STCE)

Maximum spectral density identification

The first step in the analysis is to identify the trace of maximum spectral density for each sounding path.

This can be done automatically in real time, although manual correction can occasionally improve results. See: Fišer *et al.*, 2017, doi:10.1186/s40623-017-0719-y

The result is a time-series of Doppler shifts f_D .

Open 🔻 📭			TechTIDE_cdss_CDSS.P.CDS ~/.cache/.fr.kv	5_20240201T204500 kWiz		Save		×
1#File generated by t	he Warning Sys	tem of t	he TechTIDE project.					-
2 #CDSS method results	based on full	y automa	tic processing, provid	led by the Ustav F	yziky Atmosfery AV CR	(IAP), Czec	ch	
Republic.								
3 #Sounding frequency	04.65MHz							
4 #Columns description	1							
5 #time(s); Doppler sh	ifts including	offsets	fD1(Hz), fD2(Hz), fD3	B(Hz); uncalibrated	d signal powers pl, p2	, p3; ratio	os of	
signal powers to pow	ers in frequen	cy bands	r1, r2, r3					
6 2024-02-01 20:45:30	-1.43 2.52	-4.81	31773538929	26943121902	30576407134 0.632	54 0.65772	0.57873	
7 2024-02-01 20:46:30	-1.60 2.52	-4.90	23183741783	24433692116	33274982196 0.525	30 0.61273	0.62210	
8 2024-02-01 20:47:30	-1.41 2.52	-4.90	22794610864	25483451759	25903672180 0.564	59 0.65243	0.51965	
9 2024-02-01 20:48:30	-1.51 2.52	-4.90	27703549003	28094220528	27715897168 0.606	50 0.59269	0.54315	
10 2024-02-01 20:49:30	-1.56 2.53	-4.94	31422712350	15835891573	34728273804 0.611	08 0.41753	0.58475	
11 2024-02-01 20:50:30	-1.55 2.52	-4.97	36631020023	23994945797	37960682744 0.648	99 0.45857	0.61885	
12 2024-02-01 20:51:30	-1.38 2.52	-4.97	21295259734	27278073322	40667045539 0.576	15 0.57647	0.60859	
13 2024-02-01 20:52:30	-1.56 2.24	-4.97	17335899608	44316634691	45207782616 0.526	75 0.61815	0.68459	
14 2024-02-01 20:53:30	-1.49 2.52	-4.94	34154471869	20799253352	44551523523 0.678	49 0.57537	0.64879	
15 2024-02-01 20:54:30	-1.47 2.52	-5.01	67302167386	34212045184	24086550485 0.808	68 0.57741	0.48836	
16 2024-02-01 20:55:30	-1.53 2.52	-4.97	61786184996	22591565352	41174049404 0.775	11 0.37942	0.67552	
17 2024-02-01 20:56:30	-1.55 2.52	-5.03	61363573672	28699576382	22978278340 0.782	87 0.57577	0.46632	
18 2024-02-01 20:57:30	-1.49 2.52	-4.97	57922186950	29180582070	26482264439 0.759	86 0.50760	0.58423	
19 2024-02-01 20:58:30	-1.45 2.52	-4.90	55414389271	37986976667	24677142391 0.787	29 0.74528	0.55617	
20 2024-02-01 20:59:30	-1.32 2.52	-4.84	87494465960	37084522062	25934530145 0.791	35 0.68127	0.54442	
21 2024-02-01 21:00:30	-1.53 2.52	-5.03	109501619551	29669377851	24582174941 0.851	03 0.51909	0.47706	
22 2024-02-01 21:01:30	-1.47 2.52	-4.99	75133290997	25780390470	21129011580 0.834	52 0.69460	0.48786	
23 2024-02-01 21:02:30	-1.40 2.52	-4.88	101531764252	29209959085	28029438725 0.849	35 0.73136	0.57832	
24 2024-02-01 21:03:30	-1.21 2.52	-4.73	79952456836	32407101564	70989126427 0.658	66 0.72467	0.76453	
25 2024-02-01 21:04:30	-1.45 2.52	-4.81	186383316555	18905320589	38358039313 0.864	16 0.58516	0.62610	
26 2024-02-01 21:05:30	-1.27 2.52	-4.82	155508683004	30092612529	69902717571 0.882	93 0.72542	0.74653	
27 2024-02-01 21:06:30	-1.27 2.55	-4.69	157322208390	57958901994	82974236350 0.839	91 0.84164	0.75384	
28 2024-02-01 21:07:30	-1.12 2.66	-4.53	317293285936	92781728057	129081136536 0.913	04 0.88245	0.81504	
		1 50	1300000113110	Distant Annual States			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

(Data is sampled here to one minute resolution.)

What is smaller than a "medium-scale" TID?

CDSS can observe phenomena time-scales much shorter than MSTIDs!

The time series f_D is band-pass filtered to remove variations shorter than 4 or longer than 50 minutes.

The time series is also mean centered.

If data is bad (e.g., low signal to whole-band power), no TID detection is performed.

TID detection & characterization

Analysis is done every 15 minutes with a 90 minute sliding window. A TID is considered to be present when the variance $\sigma(f_D)$ is above some empirical threshold.

Propagation velocity and direction (in 2D) are obtained by slowness (reciprocal velocity) search:

$$W(s_x, s_y) = \sum_{t_i} \left(\sum_{T_X} \frac{f_{D, T_X} \left(t_i + s_x \delta x_{T_X} + s_y \delta y_{T_X} \right)}{N} \right)^2$$

Outputs obtained are horizontal velocity and azimuth of the best fitting TID, the variance of Doppler shifts, and the dominant period of variations (all with estimates of uncertainty).

Remarks:

- Some (empirically obtained) minimum for the normalised maximum of $W(s_x, s_y)$ can be used to consider a result reliable.
- There is an assumption that there is only one TID present, constant for the 90 minute analysis window.

Real-time, operation MSTID detection

During the TechTIDE project (2017-2021) MSTID detection from CDSS data was brought into real-time operation, and the relevant code made open source. However: currently only working for the Czech data.

Finding CDSS data in the PITHIA portal

IAP-P Doppler sounder spectrograms — Mozilla Firefox Private Brow	sing					8
IAP-P Doppler sounder spin × +				👓 Pr		
$\label{eq:constraint} \leftarrow \ \ \rightarrow \ \ O \ \ A \ \mbox{https://esc.pithia.eu/data-collections/DataCollection_LAP-P_DopplerSource } \ \ Q \ \mbox{Search} \ \ Q \ \mbox{Search} \ \ \ \ \ \ \ \ \ \ \ \ \ $			3	8		
PITHIA Home Scientific Metadata - Space Physics Ontology	Provider Login/Sign up					
Home > All Scientific Metadata > Data Collection-related Metadata > Data Collections > IAP-P Doppler sounder spectrograms		Help	0 & Suppo	ort		
IAP-P Doppler sounder spectrograms	Identifier					l
Description The continuous Doppler sounding is based on the measurement of Doppler shift, which experience the radio waves that reflect from the ionosphere. The Doppler shift results	Local ID	Data0 _JAP- P_Do nder_ ram	Collectic pplerSo Spectro	u Ig		
from the motion of reflecting level or from the changes of electron densities.	Namespace	pithia				
	Version	1				
Interact	Created	Thurs Marcl 15:00	day 9th h 2023, :00			
Method Description Data Format Link	Last	Thurs	day 9th			
Access to The latest Doppler shift image/jeag Doppler Sounder display products spectrograms and archive. Spectrogram Image Portal (" (ind, open in new	Modified	March 2023, 15:00:00				
tab)	Download					
Properties	DataCollection_IAP- P_DopplerSounder_Spe					

Since we know what we are looking for, we can either browse directly to this data-set or simply search for "Doppler sounder."

T. Verhulst (RMI/STCE)

TID nowcasting - MSTID

Archive of CDSS spectrograms

In the archive are all spectrograms from the instruments in Czech Republic, Argentina, Taiwan, South-Africa, France, Belgium, Slovakia, and Germany. The repository contains all spectrograms, but currently only as images.

T. Verhulst (RMI/STCE)

TID nowcasting – MSTIE

Example spectrograms

T. Verhulst (RMI/STCE)

Example spectrograms

f=4.66 MHz; lat=23.96; long=120.93, time=0 is at 2024 02 06 16:00

Not all data is equally nice ...

Example spectrograms

f=4.63 MHz; lat=-26.84; long=-65.23, time=0 is at 2013 10 25 00:00

Question

What is going on here? Which country would this be from?

T. Verhulst (RMI/STCE)

- Continuous Doppler sounding systems provide the best data for MSTID detection.
- Oata processing and TID detection can be done in (near) real-time, which good results.
- Oata coverage is very limited, real-time operations currently only for one location.

The end!

Questions?

Starting point for further reading:

J. Chum & K. Podolská (2018): 3D Analysis of GW Propagation in the Ionosphere, *Geophys. Res. Lett.* **45**(21), 11,562–11,571, doi:10.1029/2018GL079695.